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SUMMARY

A set of non-singular vectorial elements is used to obtain a

new form of the variation of constants, which can be used in nu-

merical integration of the perturbations of minor planets and

satellites, even for orbits of very small eccentricity--without

introducing the eccentricity as a "small divisor." The equations

for treating the radiation pressure effect on nearly circular

orbits of artificial satellites (of the Echo I type) are also derived.
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COMPUTATION OF THE PERTURBATIONS OF

NEARLY CIRCULAR ORBITS, USING A

NON-SINGULAR SET OF VECTORIAL ELEMENTS

by

Peter Musen

Goddard Space Flight Center

INTRODUCTION

In this paper a set of non-singular vectorial elements will be introduced which per-

mits computation of the perturbations of orbits, even those with very small eccentrici-

ties, by means of numerical integration. The classical method of treating the variation

of elliptic elements, as well as some methods developed more recently (References 1, 2,

and 3), suffers from the inclusion of the eccentricity in the denominator; this makes

computations difficult for the case of nearly circular orbits.

The launching of satellites into orbits with small eccentricities has brought this

problem to attention again. The solving of this question requires the development of new

forms of the variation of arbitrary constants, applicable to cases of both moderate and

small eccentricities. Furthermore, these equations for the variation of constants must

possess a symmetry in order to facilitate programming and make the use of machines

more efficient.

In a previous work (Reference 2) the author made the following statement about the

eccentricity:

"It is impossible to remove this factor from the denominator of ... (the equatlon for cLSM/dt) ...
or some corresponding equation, which controls the angular posltlon of the planet in its orbit
unless we resort to series expansions such as those used by Delaunay."

The author now revokes this statement, and the present discussion will show that this

small divisor in the computation of special perturbations is in fact removable.

Recently S. Herrick (Reference 4) suggested a method that is valid for small eccen-

tricities. The new method which will be set forth here makes use of Gibbs' rotation vec-

tor (Reference 5) and the vector of the Hamiltonian integral.



Thedifficulty connectedwithorbits of smalleccentricitycomesfrom twosources.
Thefirst sourceis a tendencyalwaysto deducea unit vector directedtowardtheoscu-
lating perigee. Thedeterminationof this unit vector, unfortunately,is alwaysconnected
witha divisionby theeccentricity. Thisdifficulty canbeavoidedby representingthe
positionvectorof thebodyin terms of theGibbs'andHamiltonianvectors. Thesecond
sourceof difficulty is in theuseof thedisturbedmeananomaly.This difficulty canbe
removedby combiningtheperturbationsin theperigeepositionwith theeccentricanom-
aly, andnotwith themeandisturbedanomaly,andrewriting Kepler's equationin terms
of thedisturbedmeanlongitude.

Thedifficulty in computingthe radiationpressureeffectfor a circular orbit initiated
thedevelopmentof this method.However,this methodis generalandcanalsobeusedto
computetheperturbationsof planetsor satellitescausedby gravitationalforces.

PERTURBATIONS OF MINOR PLANETS

Let k be the unit vector normal to the osculating orbit plane, P the unit vector

directed from the central body to the osculating perihelion, and Q = k×P. The values of

these vectors for the initial instant will be designated by 10, J0, k0" The equation of the

motion of a minor planet is

d2r _ r + F, (1)
dt 2 r 3

where r is the position vector of the satellite, t is time, and F is the disturbing force.

The osculating orbit plane can be considered a rigid body with its instantaneous axis of

rotation coinciding with the radius vector. Imagine a system of coordinates rigidly con-

nected with the osculating orbital plane and rotating with it. Hansen (Reference 6) labeled

such a system "ideal." It has the property that the equation of motion of the planet, rela-

tive to this system, retains the form of Equation 1. We arbitrarily choose two axes of this

system to be in the orbit plane and the third axis to be normal to it. Let × be the longi-

tude of the osculating perihelion with respect to the ideal system of coordinates.

The initial position of the perigee, originally defined by the vector i 0 , in the inertial

system, can be imagined to participate in the rotation of the orbit plane. At time t, the

vector i is the unit vector to the initial position of perigee. Its position is invariable

with respect to the ideal system, according to the definition of i, andwill be designated _0-

Let j - kxi. The system (i, i. k) is deduced by a plain rotation of the system

(i0, Jo, ko) without sliding. Vector P, however, in addition to rotating, slides in the

orbit plane.



Thepositionvectorof theplanetis

r = Pa(cosE-e) + Q av/1 - e 2 sin E. (2)

where a is the semi-major axis, e is the eccentricity, E is the eccentric anomalyof the

satellite, and

P : + i cos(x_ - %) + j sin(X"- %), (3)

Q = - i sin(_- %) + j cos(_- %). (4)

Introducing the Hamiltonian vector

= - iv + ju (5)

where

= 1 h0 _ 1 h h (6)
h V_' _/_0 ' u = ho0 e cos(X - To), and v = _ e sin(X - n0),

and putting

x = E+ (x- _0), (7)

p = a(i cos k + j sin _), (8)

we deduce (from Equations 2-8):

h°2 gg'o + (a _) kxg. (9)
r = p h2 1 + _ - e 2

Equation 9 shows that no computation of the unit vector P is necessary since the

perturbations in the perigee position are combined with the eccentric anomaly, and the

position vector of the body is expressible in terms of the Hamiltonian vector directly.

Consequently no division by e takes place.

For a minor planet we make use of Gibbs' rotation vector to represent the rotation

of the orbit plane from its initial position (i o, Jo, ko) to its position (i, j, k) at time

t. The use of this vector instead of the elements _ and i removes the difficulty

connected with a small inclination. In addition, the matrix of rotation is obtained in



a more direct way,without resorting to trigonometric transformations. To some
degreethis idea is an extensionof the idea usedby B. Str_mgren(Reference1) in
his methodfor specialperturbations. StrSmgrenusedtheintegratedvalueof theangular
velocityof rotationof theorbit planeasa substitutefor Gibbs'vector. However,this
approximationdoesnotaccuratelyrepresentthe rotationof theorbit planefrom its ini-
tial position,andas a result only theperturbationsof thefirst order canbeeasilyob-
tainedwithStrSmgren'smethod.Let 8, ¢, and¢ be,respectively,the inclinationof the
osculatingorbit, the longitudeof theascendingnode,andtheargumentof perigeewith
respectto the referencesystem (i 0, Jo, ko)"

Set

s I

¢-¢
cos 2 8 (10)

- ¢+ _b tan 2 '

cos 2

s 2
cos

2

e (ii)
tan_,

¢+_
S 3 = tan _ ,

s : sii o + s2j o + ssk O,

s 2 = s 12 ÷ s22 + s 2 ,

(12)

(13)

The ratios

8 ¢-¢ _ _l

_'x = sin _-cos --_ v/_--+s2

_2 sin 8 _ s2= _ sin -
,V/_- + S 2

e ¢+¢ ss
_3 : cos _- sin --_ -

v/l+ s 2

_4 = cos _cos =
_]/1 + s 2



are Euler's parameters of rotation. In terms of s the matrix of rotation V, represent-

ing the rotation of (i o, Jo, ko) to position (i, j, k), can be written in the form (Ref-

erence 5)

F -- I + _2 [sXI + sX(sXI)] = ii o + J,Jo + kko, (14)
1 + s 2

or in the form

V 1 - s 2 2sXI + 2ss (15)- I + ,
1 + s 2 1 + s 2

where I is the idemfactor. Equation 14 or 15 should be used instead of the develop-

ment of V into an infinite series (Reference 7). Let S 1 and S 2 be two Gibbs' vectors.

If the rotation defined by S 2 geometrically follows the rotation defined by Sl, then the

Gibbs' vector of the combined rotation is given by the formula

Sl + S2 + S2xSI (16)
8 3 =

1- SI.S 2

Let _ be the instantaneous angular velocity of rotation of the osculating orbit plane

and _1, _2, and 0 its projections in the directions i, j, and k, respectively. We have

: i_ I + jc%

h (h 0 F'k)r.
ho (17)

Put

(18)

Replacing s by -s in Equation 14 we have:

[.-1 = ioi + JoJ + kok = I 2 [,xI- ,x(.xI)]
i+ s2

(19)

¢,,= f_ _2 [sxQ- sxCsx_)] , (20)
I + S 2



2 ,r,x. + ,,x( ,,x,,,)]W + --

1+ s 2

= r._. (21)

Let s and s+ds be the Gibbs' vectors defining the rotation of the osculating orbit

plane from the moment t o to the moments t and t+dt, respectively. The infinitesimal

matrix of rotation which brings the osculating plane from its position at time t to its

position at time t + dt is I + w×I dt. Since for an infinitesimal rotation, higher order

terms can be neglected, then r = I + 2sxI, and from this we deduce that the correspond-

ing Gibbs' vector is (i/2),_ dr. Substituting S I = (1/2)w dt, 82 = s, and S s = s + ds into

Equation 16, we deduce that

or

ds ! 1 1
= _',-.,+ _ sx,.,,+ _-s s._

ds 1
dt - 2 (I + sXI + ss)._.

(22)

Wefind from Equationl4, (1/2)(1 + s2)(r + I)= I + sXI + ss, and from Equations 21,

22, and the preceding equation,

ds _ 1 + s 2 (23)
dt 4 (o + _).

Multiplying Equation 22 by

2
1 + s2 (I - sXI)

and considering

I.A = A,

AXI.B = AxB,

(sXl)-(sXI) = ss - s2I,

we deduce

2 ds

1 + s_ (I - .XI) _-_-,



or

CO = 2(d. d.)1+ s _ 8-F + 3T -x •

This vectorial formula is identical with the classic scalar formulas:

c% d_l d_ 2 d_ 3 d_ 4

2" = + _4 _ + _a dt _2 dt _l ,It

Wy d_: 1 df 2 dg 3 d_ 4

2" -- - _3 _ + ¢4 _ + _1 dt _2 -d_-- '

% d_l d_ 2 d_ s d_: 4

_- = + _2 dt (1 _ + _4 dt _s-d_-- '

From the formula

h (hoF.k)r

and Equation 20 we obtain:

h (hoF.k)( F_l.r )
= IT-°

h I 2sXr - _2sX(sXr)]= 1_° (hoF'k) r- 1 + s _

: (_o)(hoF.k) r (1 - s2) - 2s×r + 2ss'r1 + sa

Substituting Equations 17 and 24 into Equation 23 we have, as a final result,

(24)

ds _ 1 11

dt 2 h o
(hoF'k)(r + r×s + ss.r). (25)

For StrSmgren's method

ds 1 h

d t 2 h o
(hoF'k)r,

which evidently represents only a first approximation. The fact that two terms of
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Equation25are missingfrom theequationfor StrSmgren'smethodmakesthecomputa-
tion of accurateperturbationsby Stromgren'smethodimpossible.

Theequationfor the variationof g hasbeendeducedpreviously(Reference2). In
thepresentcaseit takesthe form:

dg /' r_ F r r-F 2r k k'F. (20)
d-T = _p]l + h0 rph0 ph °

The computation of s and g by means of numerical integration is performed in the iner-

tial system directly. By setting

PO = i o cos ), + Jo sin _,

we have for p', the unit vector in the direction of p in the i, j, k system,

2
P* : PO +

1 + s
[ * *)]2 S×po + s×(S×Po '

and for i, j, k,

2
U= Uo+

1 + s
[,XUo+ ,

where U = i,j,k and Uo = i o, Jo, ko" Finally, in the inertial system,

h02 ( g g'P° _ }1o
r = ap* - a .... + a kXg.

l+v / Y

In addition we have u = +g.j, v = -g.i, and also the classical result:

(27)

and

d (,,0)d_ \ h = 110 F'kXr

o: 2)h 0 2 g ho3 '

(28)

(29)

where n is the mean motion of the satellite.



If preferred, an equation for n can be formed and integrated directly.

formula:

9

The classical

dt '/a r.F + 1 - _ + 2_ - e sin 2 _ i _-,

for the perturbations in the mean longitude takes the form:

AAL 1

dt

in the ideal system of coordinates.

-_-2 r.F + 1 - v dt-

From Equations 6-9 it follows that

(30)

From

dt

dg _
dt

dv du

u c_- - v dt- (31)

I.I 2 + V 2

dv du
- idt + j_-+ nXg

there follows, taking Equation 31 into account,

and finally, from Equation 30,

dX" 1 k X dg •
d_- = g2 "g _-'

dAI'l 2 r.F + 1 ho 2 _t
dt - _£_ 1 + V_- e 2 112 k.g× .

Kepler's equation takes the form:

(32)

or the form:

h0 ffdnX--_- (u sink - v cosk) = Mo + no(t - to) + dr-dr2 + ALl,
(33)

.o_ ffdnh - -_- g.p* = M o + n0(t - to) + dr- dt2 + ALl"

As we see, the use of vectors s and g instead of the elliptical elements or instead of the

elements P and k permits the computation of perturbations even for nearly circular or-

bits with no small numerical divisor.
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The differential equations for • and g admit an integral

g.k = 0

which can be used to check the computation.

PERTURBATIONSOF SATELLITES

In the case of either an artificial satellite or a natural planetary satellite, a method

of numerical integration of perturbations will take a most convenient form if it is based

on the mutual separation of secular, long period, and short period effects. A rotating

system of coordinates must be chosen as the basic reference frame in such a way that its

motion contains the secular and long period motions of the node and of the perigee, at

least to a reasonably good approximation. Such a choice is necessary to prevent a fast

accumulation of perturbations as well as to avoid the necessity of a rectification of ele-

ments after the perturbations become large.

Numerical integration permits the drag effect to be included from the very start, as

well as the cross action between the oblateness and the drag effect. The case of critical

orbit inclination can also be treated by means of numerical integration, and a convenient

scheme for doing this has been reported by D. Fisher (Reference 8). The inclusion of

tesseral harmonics becomes less complicated in this method than in a general theory.

The mean motions of the node and perigee and the long period effects can be obtained

to a reasonable approximation from existing analytical or semi-analytical theory. The

scheme given here is designed to tie the author's semi-analytical theory to the process

of numerical integration. However, other theories, with small modifications, can serve

the same purpose. In particular, the polynomial representation of secular and long

period effects published by the Smithsonian Astrophysical Observatory can be of great

assistance.

In addition to the rotating system mentioned above, a certain ideal system of coor-

dinates is to be associated with the moving orbit plane. Let us designate by fn 0 y dt the

perturbations of the position of perigee, which is included from the very start, and let 770

be the original position of perigee with respect to the ideal system. The "mean" perigee

is determined by the expression 'To + Y n0y dt . The osculating perigee describes oscil-

lations about its mean position. Let i be the unit vector directed toward the mean posi-

tion of perigee, and j = kxi as before. The position vector of the satellite is given by

r = ir cos(f + X - rro - f noy dt) + jr sin(f + X- 7ro - fnoY dt). (34)

The Hamiltonian vector is introduced by the equation



g = - iv + ju

11

(35)

where, in this case,

h

u = -- cos(X- 7r0 - [noY dt), (36)
hoe

h

v = 1Toe sin(x"- 7r0 - ;noy dr). (37)

These values of u and v were introduced by Brown (Reference 9) into Hansen's theory

to deduce the value of the basic function w. With these new definitions of i, j, u, v, and

g, we have formulas of the same type as before:

r -- p
ho (38)

h°2 g g'P + a -h- kXg,
h2 1 + V_ - e 2

p : ia cos k + ja sink, (39)

where k is now defined by the equation

k = E + x"- 7r0 - /n0Y dt. (40)

Designating the radial component of the disturbing force by S, the normal compo-

nent to the radius vector by T, and the orthogonal component by z, we have (Refer-

ence 9):

du S sin(f + X- Wo - fnoY dt
d_ = +h'oo ( p) T c°s(f++ I+ hoo

k"- _0 - fnoY dt) + noYV, (41)

dv S cos(,f + X_ 7to_ fnoYdt) + (1 + p) T (42)d_- = - h--£ hoo sin(f+x-_0-fn0ydt)-n0Yu'

where f is the true anomaly of the satellite. For the derivative of g with respect to the

moving axes i, j, k, we have from Equations 41 and 42:

dg + S T ( p) noYkXg 'dt = h0 r* + h_° 1 + kXr ° - (43)

where r" is the unit vector in the direction of r. In order to obtain the derivative of g

in the inertial system, the effect of rotation of the orbit plane about the instantaneous
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radiusvectorandthe effectof rotationof i and j aboutk mustbeaddedto Equation43.
Thecombinedeffectof thesetwo rotationsis (n0yk + hZr)Xg and we deduce:

 sr. T( h I44 t = h_- + _ 1+ kx¢+Gz%,xg.

Taking

h

rXg = rff-ke cos f
"0

into account and eliminating T by means of the equation

T kXr* = F- Sr* - Zk,

we deduce an equation analogous to Equation 26:

dg _ 1 ( p) 1 rr.F 2r k k'F. (45)dt - h_ 1 + F ho rp hoP

Integrating the last equation, we obtain the components of g in the inertial system di-

rectly.

Let _ be the distance of the node from the x-axis of the ideal system. Putting (as in

Hansen's theory)

2N = a 0 + go - cr- a- 2fn0adt , (46)

2K = C_o - go - c_ + _ + 2fno_dt , (47)

where _ is the longitude of the ascending node of the satellite, we have

(_) = '_0 - f(a- V)nodt,

= (_) - (K+N),

/= go - f(a+V)nodt + (K-N).

We obtain from Equation 43:

(48)

(49)

f + _ - _ = f + x - _o + f(a-_)nodt + N + K.



In his previous work (Reference 10) the author made use of the parameters

13

i i
_1 = sin _cos N, _3 = cos _sin K,

i i
k 2 = sin _ sin N, k4 = cos _-cos K.

With the present notation, the equations for the _'s take the following form:

where

( TMdt - + noak2 + 2- Zho %k4g -- k3m '

-_- = - n0aX I + _ 7ho _ - k4m ,

dK3 1Fh (+k2f klm)tdt - + no_4 + 2Lh o Zho + '

dt - - noV;O_3+ 2 Zho

(50)

e= rcos[f+_-(_)],L (51)
f

m r sin[f+, (_)].]

The development of the equationsfor the k's iscompletely analogous to thedevelopment

performed by the author in Reference 10 for slightly different definitions of g and m.

Let el, e2, e 3 be unit vectors of the inertial frame of reference. Putting

and

we have

A3(a)

At(a)

+COS CZ

:Ei
-sin a 01

+COS a 0 =

0 1

e3e a + (I - eae 3) cos a + IXe_ sin a

0 01+COS cc -sln --

+sin a +cos

ele I + (I - elel) cos a + IXe 1 sin a,

r = A3(_)'A,(i)'A3()_-_r) "
I COS

sin ;

C
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or, taking Equations 46-49 into account, we deduce

r = [_ • sin( f + k" 770 fnoY dt ,

0

where (_) = (no - %) + fno(y + a - _)dt

and

F = A3[(_)].A.A3[(_)],

2 r .-1
A = I + lsXI + sX(sXI)1

1+ m2 L - "J

(52)

(53)

Evidently

= A3(K-N).AI(I).A3(K+N).

r = ie I + je 2 + ke 3.

In other words the columns of the matrix Y are the unit vectors i, j, k.

Introducing the vector

(54)

(55)

8 --

elk1 e2_'2 + e3_'3 cos N i sin N i

)_4 - e i _ tan _ - e 2 cos---K tan _-+ e 3 tan K

(56)

and putting

we deduce from Equations 50:

1_ : el_ + e2m,
(57)

ds 1 h

d_- = noasXe$ + n°r/(% + ss'e3) + 2h0 2h°(I + sXI+ ss)'R.
(58)

It follows from Equation 54 that

(I + s_)(A + I) = I ÷ .XI + s.,

and Equation 58 takes the form:
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dB 1 h
dt - noas×e_ + no_7(e3+ ss.e_) + ](1 +s 2) _o Zh°(A + I)'B.

(59)

We have, from Equations 52 and 53,

and consequently,

r = A3[+(_)]'A'B

li = AT'A3[-(_)] "r.

Substituting Equation 60 into Equation 59 we deduce, finally, that

(60)

1 2) h
d-t-:d$ noas×e 3 + n0_(e 3 + ss.e$) + 7_(1 + s F0° Zhor. A3[(_)] "(I + A). (61)

We have from Equations 39 and 53:

This value of p must be used in connection with Equation 38. Equations 28 and 29 of the

previous section are to be used for the determination of ho/h and n. It iS necessary to

emphasize that in this exposition only vectorial and dyadic notations are used, and there-

fore it is not necessary to distinguish between column vectors and row vectors.

Designating the perturbations of the mean longitude in the orbital plane by ALl, we

can write Kepler's equation in the form

it iot dn (63)E - e sin E = Co + not + ALl - (X - _0) + _- dr2

or, more conveniently, in the form

it ;t tdok - (u sink - v cosk) = c o + n0(1 - y)dt + AL t + _- dt 2, (64)

where u and v are obtained by means of the equation

[u,v, 0] = g.P. (65)
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Differentiating Equation 35 we have

dv du
dd_tt = - i _ + j _- + noYkXg + hZrxg, (66)

It follows from the last equation that

dd__t dv duk.g× = u _- - v _- + noyg 2.

Substituting this result into

dx 1 ( dv du)d--_- noY = _- u _- - v _- ,

we obtain

d_ _1 k dg
d-_- g2 "gXdt "

From the last equation and Equation 30 we deduce a formula of the same form as Equa-

tion 32:

Setting

dAL1 _ 2 r.F + 1 ho a d__

dt V_ 1 + v/1- e 2 ha k'g×dt "

dAL _ _22 r.F + 1 h°2 k.g×d_ (67)
dt = n - no( 1 + y) V_ 1 + _ h2 '

we have

ho (68)
k - -h- (u sink - v cos)_) = c o + not + _L.

From the preceding developments we can now give a collection of formulas for the com-

putation of special perturbations of a non-singular set of vectorial elements:

_t 1 ( p) 1 r r.F 2___£_rk k.V (69)= Fo 1 + F- iT° -_p - ho p ,



whe re

We have also

ds 1 2) h
d-T : noas×es + no_(e $+ ss.es) + T4(1 + s Fo° hok.F r.¢,

¢ -- A3[(_)](I + A).

17

(7o)

d ( h° )d-t -h- = h o F'k×r, (71)

d__, 2
- n - no(l + y) ---_r.F +dt

va

1 ho 2 dg

h2 k'gX_- .
l+5-e 2

The matrices of rotation are computed using the formulas

(72)

1- s 2 2
A - -I + (sXI + ss)

1 + s 2 1 + s 2
(73)

r-

The remaining elements are computed by means of the equations

(74)

[u,v,0] = g.F, a-
ao(1- eo2 )

[12
g2

ho2

h o

(75)

and the position vector is computed by means of the formulas

ho 2 g g'$ ho

= + a T kxg,
r p h2 1 + V/1 - e 2

(76)

(77)

ho (78)
k - -_- (u sink - v cos k) = c o + not + AL.
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APPLICATION TO THE DETERMINATION OF THE

RADIATION PRESSURE EFFECT

In the case of the radiation pressure there exists a force function, which can be writ-

ten in the form

= Fu° .r,

where u° is the unit vector directed toward the sun.

u°.i = A, u°.j = B, u°.k = C,

Then

and

Put

(79)

¢ = X - _o - fn0ydt" (80)

r = ir cos(f + '_) + jr sin(f + ¢)

= FrA cos(f + ¢) + FrB sln(f + ¢).

Equations 41 and 42 can be written in the form (Reference 11)

du 1 bD 1 ( 1 r)_- = + _ sin(f + _b) _+ h_ 1 + _ cos(f + ¢) _fl1 - e 2 _-+ n°yv'

d v = 1 cos(f + ¢) _-r + h_ 1 + - sin(f + ¢) _--- noYU,
dt h 0 1 e 2

h h
u = -- cos @ v = -- sin ¢

hoe , h0 e •

where, asbefore,

Setting

w = u + iv, W = u - iv, _ = B + iA, P = B - iA,

i = _z]-, and substituting Equation 81 into Equations 82 and 83, we obtain

dw F F P r F u r exp [2i(f + _b)1 - noiYW.

where

(81)

(82)

(83)

(84)
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In order to introduce the effect of the earth's shadow we have to find the average

disturbing force with respect to the mean anomaly M over the sunlit part of the orbit. Let

x, correspond to the point where the satellite leaves the shadow and _-2 correspond to

the point of re-entry. Taking dM = (r/a)d_. into account, we deduce from Equations 84

where

dw F F _K2 + YK3
inoy+' (85)

_- = "Vh0 KI + 2ho I- e 2

).2

K1 - 2-u W d_,

1

(86)

).2

1 _). 2 (87)K2 - 27z (r) d_,

1

)'2

).1

(88)

Set

e = sin ¢, { = exp ik.

Then from the basic formula (Reference 12)

we deduce

_iE/P+q '

(89)

r 1 h0 1 h0 o l

a = - "2-hW_ + 1 - _ --h--W_ ,

(90)

5 2

2 1 "'o-2,-_ h° I 2 w_ x 2
= _ h2W_ -Z-_+ I+ _e --h- +_--_w_

(91)



2O

ho2w2

h3 C 1 ho4 C2
_ "'o w 3 + 1 w 4

ha _ h 4 2
(92)

Substituting Equations 90-92 into Equations 86-88 and taking

into account, we deduce

dk -
df

if

,<,ho ,hoK| = 2_--T - 2-h- _f + ih + _-_- w_'' (93)

I+ h 2 h o _ / I 2_ ho _ - --
I 1 o _,2F+2

Ks - 2_i 8 --h_ = - --_-wf + \I + _e/ ik + -_- wf'' 81 ho2h2
(94)

K 3 'E= _-i

ho 3 w3

I+ -Tw 1+ {+_-_

_'' 1 h:w4 _:-2 --_ X2

I + xl

(95)

The presence of a secular effect caused by the earth's shadow (Reference 13) in Equations

93-95 is evident.

Introducing the k-parameters from the previous section and putting

p = k i - ik2,

we can write Equations 50 in the form

q = k 4 - iNa,

dp 1 h [f +
= + inoa p + _ F00 Zh o _r expi ¢ + (w)] ,

(96)



21

dq _

dt
I h [f + (_)]

- ino_ q - _-Fo ° Zh o_r expi ¢ + , (97)

where (_) is the "mean" argument of the perigee,

Setting

(_) = (Wo - _o) + /no(a - _ + y)dt.

_2

1f 2K4 = _ (r) exp Ei(f + _)] d_,

K1

we deduce for the radiation pressure effect:

dp F h

d--t- = + in°ap + 2 h00 " aCh o _ expi(w) "K4,
(98)

dq _ - . F h

d--t- - ln07_q - 5 Fo. aCho_ exp i(_) .K 4, (99)

and it follows from Equation 89 that

I_ h0 ' (, + ,-a1 1 (1 +_)_.ff _2 + _K4 - 2_ri

3 ho 1 2 +A " -e2- h°2 1 ho 3 _w3¢'_ 2 __] x2

- _ _--wi)_ 2 1 + _ h2 w2_'l + 8 h a 1 + 1_- e_Jx 1

The position of the orbit plane at the time t is given as before by the rotation matrix

r = A3[(,)] .A.A 3 [(o_)] , and the columns of this matrix are the components of i, j, and k

in the inertial system. Thus, the effect of the oblateness perturbations will be concen-

trated mainly in Aa [(_)], Aa [(_)]. The matrix A carries predominantly the effect of the

radiation pressure and has the same form as the corresponding matrix introduced in the

author's previous work (Reference 10).

From

h0 ('00,dX _-'
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we deduce for the radiation pressure effect, taking Equations 81 and 84 into account,

d-_ = _ Fhoa(vK 4 + _-'I_4).

The values of kl and k 2 are obtained from the equation

(101)

r.u 0 = - _r 2 - #12 ,
(102)

where Pt is the mean radius of the earth and Equation 38 is substituted for r. The

programming of the formulas given in this section can be done by using the complex

arithmetic method developed by the IBM Corporation (Reference 14).

CONCLUSION

This paper has presented a new form of the variation of constants, which can be used

for numerical integration of the perturbations of planets or satellites even for orbits with

very low eccentricities or inclinations. The "small divisor" in the form of e or sin i,

which appears in the classical and in some modern methods, is not present in this method.

Recently Dr. Paul Herget published a work which gave a method for solving this prob-

lem in a different way. In his method he also used a modified Kepler's equation but he

combined the eccentric anomaly with the argument of perigee (Reference 15). In the pre-

sent work it was found more convenient to combine the eccentric anomaly with the position

of the perigee reckoned from the departure point.

In particular, the effect of the radiation pressure on nearly circular orbits (Echo I

type) can be treated by using the formulas given in the preceding section of this discus-

sion. In addition, through numerical integration, the effects of oblateness, drag, and

radiation pressure can be combined more easily by this method than by a development

of the perturbations into trigonometric series.

Extensive and important work has been done by many authors in the field of analyti-

cal or semi-analytical theories of artificial satellites. However, many important non-

gravitational effects which can be observed in the motion of satellites do not favor the

development of perturbations into trigonometric series. In order to include all these ef-

fects as well as their cross actions, it would be preferable to resort to a special pertur-

bations method.
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